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A pressure based, iterative finite volume method is developed for calculation of compress-
ible, viscous, heat conductive gas flows at all speeds. The method does not need the use of
under-relaxation coefficient in order to ensure a convergence of the iterative process. The
method is derived from a general form of system of equations describing the motion of
compressible, viscous gas. An emphasis is done on the calculation of gaseous microfluidic
problems. A fast transient process of gas wave propagation in a two-dimensional micro-
channel is used as a benchmark problem. The results obtained by using the new method
are compared with the numerical solution obtained by using SIMPLE (iterative) and PISO
(non-iterative) methods. It is shown that the new iterative method is faster than SIMPLE.
For the considered problem the new method is slightly faster than PISO as well. Calculated
are also some typical microfluidic subsonic and supersonic flows, and the Rayleigh–Bénard
convection of a rarefied gas in continuum limit. The numerical results are compared with
other analytical and numerical solutions.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The rapid growth of microfluidic and nanofluidic technologies suggests new challenges for computational fluid dynamics.
For example, the computational analysis of many problems, concerning gaseous flows in micron- and submicron-size
devices, cannot be based on the classical continuum fluid models, which are no longer valid at micron and submicron scales.
In such flows the mean free path of the gas molecules is comparable to the characteristic size of the device and the kinetic
effects of rarefaction and non-equilibrium must be taken into consideration [1–3]. For small Knudsen number
Kn < 0:1 ðKn ¼ ‘0=L , where ‘0 is the mean free path of the gas molecules and L is the characteristic length), a continuum
approach based on modified Navier–Stokes–Fourier or extended hydrodynamic [4–6] continuum models with corresponding
velocity-slip and temperature-jump boundary conditions is still applicable and, respectively, preferable. However, for larger
Knudsen numbers, where the non-equilibrium effects are significant, a molecular approach, based on kinetic theory models
[7,8], or the particle DSMC (Direct Simulation Monte Carlo) method [9] has to be used. In the numerical examples, given in
the present paper, we restrict ourself to the use of Navier–Stokes–Fourier continuum model [10] with state-depended trans-
port coefficients determined by the first approximation of the Chapman–Enskog theory for low Knudsen numbers. In our
opinion this model captures the basic flow effects of the motion of compressible viscous heat-conducting gas in continuum
. All rights reserved.
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limit. The mentioned above reasons lead to corresponding modifications of the numerical method for calculation of gaseous
microflows. To this aim, a new iterative pressure based finite volume method (FVM) is developed, in which the iterative pro-
cess has an improved within a time step convergence compared to the other standard FVM iterative schemes. Since the
developed approach is valid also for other classic compressible flow models, the equation system and the computational con-
siderations are given in a unified two-dimensional form. The extension of the proposed approach for calculation of three-
dimensional gaseous flows is straightforward. The widely used pressure based methods [11–20] can be classified into
two groups: SIMPLE-like methods used for calculation of steady and low or moderate speed unsteady flows and some meth-
ods specially developed for calculation of transient flows. The representative of SIMPLE-like methods are SIMPLE, SIMPLER,
SIMPLEST-ANL, SIMPLEC. All of them have an important disadvantage, when are applied for calculation of unsteady flows. It
is related to the existence of a term @q=@t ¼ ðq� qn�1Þ=Dt in the equation for pressure, which makes the standard iterative
scheme unstable. To make the iterative scheme converging one has use under-relaxation coefficients. A similar problem has
been considered by Issa [19,21], by using his method PISO, a non-iterative method developed for transient fluid flow calcu-
lations. In PISO density in the mentioned term is substituted with pressure derived from the equation of state. We have
adopted this idea in the new iterative algorithm by substituting density with pressure in the mentioned term and rearrang-
ing the order of calculated equations in order to keep the equation of state satisfied within each iteration. Thus, the energy
and pressure equations are calculated in a separate internal iterative loop placed in the computational algorithm after the
calculation of the pseudo velocities and before the calculation of velocities. In this way we ensure the convergence of the
iterative process without using under-relaxation coefficients. A detailed comparison of the numerical results obtained by
the standard iterative SIMPLE, the non-iterative PISO and the new iterative method SIMPLE-TS (TS – Time Step) is presented
in the paper for two flows: a low speed gas flow in a microchannel and a supersonic flow past a square confined in a channel.
The efficiency analysis of the methods shows that the SIMPLE-TS is much faster than the standard SIMPLE. The efficiency of
the new method is better than that of PISO in the cases when the calculations are performed by both methods with the same
accuracy. The proposed approach is addressed mainly to problems in microfluidics and their numerical analysis, however its
universality makes it applicable also for calculation of classic compressible Navier–Stokes–Fourier flows at all speeds. The
numerical results obtained for the considered microfluidic problems are compared also to the Arkilic’s analytical solution
[22] (for a plain channel flow) and to the computational data obtained by the authors using the direct Monte Carlo simula-
tion (DSMC) method [9,10].

2. Basic equations and computational considerations

Seeking more generality we consider a unified two-dimensional system of equations describing the time evolution of a
unsteady, viscous, compressible, heat-conducting gas flow. The analysis can be extended to a three-dimensional form in a
straightforward manner. After an appropriate scaling the considered non-dimensional equation system reads as follows:
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u is the horizontal component of velocity, v is the vertical component of velocity, p is pressure, T is temperature, q is density,
t is time, x and y are coordinates of a Cartesian coordinate system. The reference quantities used to scale the system of equa-
tions (1)–(5) will be defined later, separately for each considered problem. Parameters A, B, gx; gy; CT1; CT2; CT3 and diffu-
sion coefficients C and Ck, given in Eqs. (1)–(5), depend on the gas model and the equation non-dimensional form.
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Fig. 1. Cell volume.
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The discretization of the equation system is accomplished by using a backward staggered velocity grid, in which all
dependent field variables (pressure, temperature and density) are calculated at a cell centre and all flow variables (velocity
components) are calculated at the surfaces of a cell (Fig. 1). For interpolation between two neighbor points a piecewise-linear
profile is used. In that way we approximate the derivations of second order [16]. For the interpolation of convective terms a
first order upwind scheme is used. In Fig. 1 the following grid variables are denoted:

xf
i – the left frontier x-coordinate of the control volume of node i

yf
j – bottom frontier y-coordinate of the control volume of node j

Dxi ¼ xf
iþ1 � xf

i – step on OX

Dyj ¼ yf
jþ1 � yf

j – step on OY
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i – x-coordinate of the centre of the control volume of node i, xv
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i þ 0:5Dxi
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j – y-coordinate of the centre of the control volume of node j, yv
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j þ 0:5Dyj

/i;j – field variables defined at point xv
i ; y

v
j

� 	
ui;j – the horizontal component of velocity xf

i ; y
v
j

� 	
v i;j – the vertical component of velocity defined at point xv

i ; y
f
j

� 	
Fx

i;j – the convective mass flux through the surface between control volumes (i � 1, j) and (i, j) (in horizontal direction)
Fx
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Fy
i;j – the convective mass flux through the surface between control volumes (i, j � 1) and (i, j) (in vertical direction)
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where:
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0:5ðqi�1;j þ qi;jÞ if ui;j ¼ 0
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qi;j if ui;j < 0

8<
: ð9Þ
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0:5ðqi;j�1 þ qi;jÞ if v i;j ¼ 0
qi;j�1 if v i;j > 0
qi;j if v i;j < 0

8<
: ð10Þ
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Density ðqÞ is computed at the middle points, i.e. qu
i;j at point xf

i ; y
v
j

� 	
and qv

i;j at point xv
i ; y

f
j

� 	
, by using upwind scheme

[23,24]. The upwind calculation of density is of first order accuracy, but it brings more stability of the calculations, when a
supersonic fluid flow is considered.

For brevity, here a finite volume discretization of the momentum equations is given for the y-momentum (3) only. The
equation is written in the following convenient form:
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The integration of (11) is accomplished for v over a control volume (Fig. 1), as given in [25]: integrating from xf
i to xf

iþ1 for OX,
from yv

j�1 to yf
j for OY and integrating over the volume from xf

i to xf
iþ1 for OX and from yf

j to yv
j for OY. In the middle nodes,

where v is not defined, we have used a upwind interpolation scheme, instead the approach proposed in [25]. The coefficients
are defined after adding the expressions obtained from both integrations and a corresponding rearrangement. The numerical
equation for v reads:
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The term Fy
i;j ¼ 0:5 Fy
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is defined at point xv
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v
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. With D we denote the diffusion conductance at cell face. To deter-

mine the value of D, we assume that the diffusion C varies continuously between the adjacent control volumes and use the
bilinear interpolation of the diffusion coefficients at the control volume surfaces to solve Cjxf
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The finite-difference representation of the source term Sv (11) is expressed as Sv ¼ Sv
c þ Sv

pv i;j. The coefficient Sv
p is always less

than or equal to zero; otherwise we could obtain an instability and divergence of the computational process, or physically
unrealistic solutions [16]. After the integration over the control volume for v i;j and some additional rearrangements the
source term takes the form:
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One can see easily that Sv
p is always less or equal to zero (Sv

p ¼ 0, if B ¼ 0). It is worth noting that when considering an ex-
tended hydrodynamic system of equations [4,8] high order terms such as thermal stresses etc. must enter in the source
therm. In this case, it is important to transform the source term in a such way so that the condition (25) is fulfilled.

After integration over the control volume (from xf
i to xf

iþ1 for OX and from yf
j to yf

jþ1 for OY (Fig. 1)), the continuity equation
(1) takes the form:
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Here pseudo velocities are used in the same way to SIMPLER. Therefore, the numerical equations for u and v (12) can be writ-
ten in form:
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where ûi;j and v̂ i;j are pseudo velocities:
ûi;j ¼
au

1ui�1;j þ au
2uiþ1;j þ au

3ui;j�1 þ au
4ui;jþ1 þ bu

au
0

ð20Þ

v̂ i;j ¼
av

1v i�1;j þ av
2v iþ1;j þ av

3v i;j�1 þ av
4v i;jþ1 þ bv

av
0

ð21Þ
An important part of our scheme is obtained by the substitution of density with pressure in the unsteady term in Eq. (17) (a
similar idea was used in PISO [19]):
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Finally, after some rearrangements, the numerical equation for pressure is expressed as follows:
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We multiply both sides of (23) by time step, making the numerical scheme more stable for small time steps. Scarborough
[26] has shown that a sufficient condition for the convergence of an iterative method can be expressed in terms of the values
of the coefficients of the numerical equations as follows:
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For SIMPLE-TS the validity of condition (25) can be proved easily. The coefficients (24) are positive, therefore, after the sub-
stitution of (24) in (25) the condition (25) takes the form:
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A similar substitution done for methods containing term q� qn�1 (like SIMPLE) in (25) gives the expression
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and to make the iterative process converging one has to use under-relaxation coefficients appropriately included in the iter-
ation procedure.

In the new algorithm the temperature is calculated from the energy equation (4). It is worth noting that by using conti-
nuity equation the term Dp=Dt in the right-hand side in the equation is transformed into new one, not having a time deriv-
ative of pressure:
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where:
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The discrete equation for temperature is obtained by integration of Eq. (28) over a control volume for the field variables
(Fig. 1):
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þ DTy

i;j

aT
2 ¼ max 0;�Fx

iþ1;j

� 	
þ DTx

iþ1;j; aT
4 ¼ max 0;�Fy

i;jþ1

� 	
þ DTy

i;jþ1

ð31Þ
The diffusion coefficients are:
DTx
i;j ¼ CT1

f � C
kjxf

i

Dyj

0:5ðDxi þ Dxi�1Þ
; DTy

i;j ¼ CT1
f � C

kjyf
j

Dxi

0:5ðDyj þ Dyj�1Þ
ð32Þ
A harmonic average between two neighboring nodes is used to calculate Ckjxf
i

and Ckjyf
j
:

Ckjxf
i
¼
ðDxi�1 þ DxiÞCk

i�1;jC
k
i;j

Dxi�1C
k
i;j þ DxiC

k
i�1;j

; Ckjyf
j
¼
ðDyj�1 þ DyjÞCk

i;j�1C
k
i;j

Dyj�1C
k
i;j þ DyjC

k
i;j�1

ð33Þ
The finite-difference representation of the source term ST is expressed as:
ST ¼ ST
c þ ST

pTi;j; ð34Þ
where:
ST
p ¼ 0

ST
ci;j
¼ CT2

f � Ci;j 2
uiþ1;j � ui;j

Dxi

� �2

þ v i;jþ1 � v i;j

Dyj

 !2
2
4

3
5þ vðxf

iþ1; y
v
j Þ � vðxf

i ; y
v
j Þ

Dxi
þ

uðxv
i ; y

f
jþ1Þ � uðxv

i ; y
f
j Þ

Dyj

 !2
8<
:

�2
3

uiþ1;j � ui;j

Dxi
þ v i;jþ1 � v i;j

Dyj

 !2
9=
;DxiDyj þ CT3

f pi;j
uiþ1;j � ui;j

Dxi
þ v i;jþ1 � v i;j

Dyj

 !
DxiDyj

ð35Þ
To interpolate velocities u xv
i ; y

f
jþ1

� 	
; u xv

i ; y
f
j

� 	
; v xf

iþ1; y
v
j

� 	
and v xf

i ; y
v
j

� 	
a bilinear interpolation between four neighboring

nodes is used for each one.

3. Algorithm SIMPLE-TS

Using the results of the previous section we are ready to construct the general algorithm of the new method. The SIMPLE-
TS algorithm for solving unsteady, compressible, viscous and heat-conducting gas flows consists of the following steps:

The SIMPLE-TS algorithm

Step 1. Initialize u, v, p, T and compute q using Eq. (5). Set time step Dt.
Start loop 1:

Step 2. Set the initial condition for the calculated time step: t :¼ t þ Dt; un�1 ¼ u; vn�1 ¼ v ; pn�1 ¼ p;
Tn�1 ¼ T; qn�1 ¼ q.
Start loop 2 (calculating a state for a new time step):

Step 3. Calculate convective and diffusion fluxes: Fx (7), Fy (8), Dux, Duy; Dvx (15), Dvy (15), DTx (32), DTy (32).
Step 4. Calculate pseudo velocities û (20), v̂ (21), coefficients du and dv (13), and the coefficients for pressure equation
apx; apy; bpx

; bpy (24).
Start loop 3:

Step 5. Solve the coupled equations for energy (30) and pressure (23).
Stop loop 3. In most cases two iterations are sufficient. Further in the paper this point will be discussed in detail.
Step 6. Compute q (5), using p and T calculated within step 5, as well as velocities: u (18) and v (19).

Convergence of loop 2: Check for convergence of the iteration process for the current time step by using iteration cri-
teria (36). If the iteration criteria are not satisfied go to step 3, otherwise continue.
Convergence of loop 1: If the final time is not reached go to step 2, otherwise stop the calculation.
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The following iteration criteria must be satisfied:
Fig. 2.
unstead
jp� poldjmax < �
p; jT � Toldjmax < �

T

ju� uoldjmax < �
u; jv � voldjmax < �

v
ð36Þ
where p, T, u and v are values obtained from the current iteration, pold; Told; uold and vold are values obtained from the pre-
vious iteration, �p; �T ; �u and �v are iteration criteria for p, T, u and v, respectively. When under-relaxation coefficients are
included in the iteration scheme the convergence criteria take the following form:
jp� poldjmax

ap
< �p;

jT � Toldjmax

aT
< �T

ju� uoldjmax

au
< �u;

jv � voldjmax

av
< �v

ð37Þ
where ap; aT ; au and av are under-relaxation coefficients for p, T, u and v, respectively.
A basic idea in the algorithm SIMPLE-TS is to keep the equation of state maximally satisfied within the entire iterative

process. This idea is accomplished by the calculation of pressure and temperature in loop 3 and the substitution of density
with pressure into the unsteady term using equation of state. The loop 3 reduces the computational time for reaching a given
accuracy (see Table 2). A second benefit from loop 3 is that the mass in the entire computational volume is conserved within
given limits before finishing loop 2, since loop 3 is run until satisfying criteria �p and �T .

The velocities, pressure and temperature fields are calculated at the end of the loop 2 using the values of the coefficients
and pseudo velocities (step 3 and step 4) which depend directly on the initial fields, set in the beginning of loop 2.

The interpolation, applied to the middle points as explained in the previous section, is important for a successful imple-
mentation of the new algorithm. Having in mind this the following changes have to be accomplished in order to adapt the
SIMPLE code to the SIMPLE-TS one:

1. The substitution of density into the unsteady term of the pressure equation using the equation of state is the most impor-
tant step. In this way the coefficients for the pressure equations, used in SIMPLE-TS, satisfy a sufficient criterion for the
convergence of the iterative process (26).

2. The calculation of energy and pressure equations in one loop (loop 3 of SIMPLE-TS), after calculation of pseudo velocities
and before calculation of velocities.

3. The calculation of pseudo velocities.
4. The calculation of the absolute pressure instead of the pressure-correction. To stress on the importance of the first issue

let us consider a simplified calculation of one-dimensional unsteady isothermal pressure driven flow in a duct.The exam-
ple is simple but useful to highlight the meaning of the replace of density with pressure using the equation of state (22).
The problem is calculated by using Eq. (17) with parameters A ¼ 1 and Dux ¼ 1. The inlet and outlet pressures are fixed at
ðpin ¼ 3Þ and ðpout ¼ 1Þ, at both inlet and outlet the gradient of the velocity is zero ð@u=@x ¼ 0Þ. Initially the fluid is at rest
under pressure equal to the outlet pressure. The step on OX is Dx ¼ 0:1, the time step is Dt ¼ 0:1 and the length of the
duct is 10. The calculation follows the steps of the SIMPLE-TS algorithm. It can be shown easily that in the case without
substitution of density (in the pressure equation exist term q� qn�1) the exact pressure profile is linear demonstrating a
typical incompressible behavior of the fluid while in the case of substitution (22) the solution takes into account the com-
pressibility of the fluid. The pressure profiles shown on Fig. 2 are reached after the first iteration of the loop 2. In the case
without substitution of density with pressure the equation of state is not satisfied within the iteration and a propagation
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of a disturbance from inlet to outlet is generated in each iteration making difficult the convergence of the iterative pro-
cess. To ensure convergence of the algorithm in the case without substitution of density one must use under-relaxation
coefficients and one iteration of the loop 3. The pressure profile of the exact solution of the pressure equation, when den-
sity is substituted, has a form of a compression wave (Fig. 2). Already after the first iteration the pressure profile is close to
the final solution which is sought for within the given time step. Thus, the algorithm SIMPLE-TS maximally satisfies the
equation of state during the iterative process and this leads to a better approximation of the solution after each iteration.
In this way the number of iterations, and correspondingly the computational time, is reduced.
4. Applications

The system of equations (1)–(5) is given in a general form of the Navier–Stokes–Fourier equations. For gaseous microflow
description we use the model of a compressible, viscous hard-sphere gas with diffusion coefficients determined by the first
approximation of the Chapman–Enskog theory for low Knudsen numbers [10]. For a hard-sphere gas, the viscosity coefficient
l and the heat conduction coefficient k read (first approximations are sufficient for our considerations) as:
l ¼ lh

ffiffiffi
T
p

; lh ¼ ð5=16Þq0l0Vth

ffiffiffiffi
p
p

ð38Þ
k ¼ kh

ffiffiffi
T
p

; kh ¼ ð15=32Þcpq0l0Vth

ffiffiffiffi
p
p

ð39Þ
The dimensionless system of equations (1)–(5) is scaled by the following reference quantities, as given in [10]: molecular
thermal velocity V0 ¼ Vth ¼

ffiffiffiffiffiffiffiffiffiffiffi
2RT0
p

for velocity, a flow characteristic length L (defined for each problem) for length,
t0 ¼ L=V0 for time, the reference pressure and temperature definition depends on the considered problem. The correspond-
ing non-dimensional parameters in the equation system (1)–(5) read as follows:
A ¼ 0:5; B ¼ 5
ffiffiffiffi
p
p

16
Kn; C ¼ Ck ¼

ffiffiffi
T
p

CT1 ¼ Kn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 225

1024

r
; CT2 ¼

ffiffiffiffi
p
p

4
Kn; CT3 ¼ 2

5

ð40Þ
For the Rayleigh–Bénard flow a gravity acceleration g is used in the opposite direction of axis OY, so that the Froude number
is equal to Fr ¼ V2

0=ðg � LÞ. Velocity-slip and temperature-jump boundary conditions (BC) [27] are implemented in the algo-
rithm following the standard approach [28].

The velocity-slip BC is given as:
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vs � vw ¼ f
@v
@n


s

ð41Þ
where v s is velocity of the gas at the solid wall surface, vw is velocity of the wall, f ¼ 1:1466 � Knlocal ¼
1:1466 � Kn=qlocal; Knlocal is the local Knudsen number, qlocal is the local density, @v

@n js is the derivative of velocity normal to
the wall surface. When the velocity-slip BC is applied to a vertical wall (Fig. 3) v s takes coordinates xf

iþ1; y
f
j

� 	
. The implemen-

tation of velocity-slip BC in the computational scheme is arranged in accordance with the finite volume method
requirements:
vs ¼ av
BC � v i;j þ vw

� �
= av

BC þ 1
� �

ð42Þ
where av
BC ¼ f=ð0:5 � DxiÞ ¼ 1:1466 � Kn= qv

i;j � 0:5 � Dxi

� 	
. The temperature-jump boundary condition is applied in a similar

way:
Ts � Tw ¼ s@T
@n


s

ð43Þ
where Ts is temperature of the gas at the wall surface, Tw is temperature of the wall, s ¼ 2:1904 � Knlocal ¼ 2:1904 � Kn=qlocal,
@T
@n


s is the derivative of temperature normal to the wall surface. Applied on the vertical wall (Fig. 3) Ts takes coordinates

xf
iþ1; y

v
i

� 	
and the temperature-jump BC reads as follows:
Ts ¼ aT
BC � Ti;j þ Tw

� �
= aT

BC þ 1
� �

ð44Þ
where aT
BC ¼ s=ð0:5 � DxiÞ ¼ 2:1904 � Kn=ðqi;j � 0:5 � DxiÞ.

The velocity-slip and temperature-jump boundary conditions satisfy the sufficient condition for a convergent iterative
method (25).

The examined problems are considered in a local Cartesian coordinate system on a uniform mesh with Nx and Ny numbers
of cells on OX and OY directions.

Some of the calculations are performed by the authors by using also the DSMC method and the obtained results from both
methods are compared. The DSMC algorithm used in the present calculations follows the basic steps of the ‘‘No Time Coun-
ter” scheme, proposed by Bird [9], and it is described in detail in [29]. It uses a hard-sphere model of mono-atomic gas. The
diffuse reflection boundary condition is used at the microchannel and square walls.

4.1. Pressure driven gas flow in a microchannel

The flow geometry of microchannel is shown in Fig. 4. The inlet boundary conditions ðBCinÞ at x ¼ 0 are:
p ¼ pin;
@v
@x
¼ 0; T ¼ Tin ð45Þ
At the outlet x ¼ L we impose the following boundary conditions ðBCoutÞ:
p ¼ pout;
@v
@x
¼ 0;

@T
@x
¼ 0 ð46Þ
Fig. 4. Geometry of a microchannel with length Lch and height Hch.
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The boundary conditions for the velocity u at both inlet and outlet are obtained by integration of the continuity equation (1)
over each cell in the first or last column of the grid along the x-axis. In this way we ensure a better conservation of mass.
Thus, velocity u at the channel outlet is computed by using the expression:
Fig. 5.
solution
uiþ1;j ¼ � qi;j � qn�1
i;j

� 	Dxi

Dt
1

qu
iþ1;j

� qv
i;jþ1v i;jþ1 � qv

i;jv i;j

� 	
Dxi

1
qu

iþ1;jDyj
þ qv

i;jui;j
1

qu
iþ1;j

ð47Þ
where, i ¼ Nx. Velocity u at the inlet is computed in a similar manner.
The parameters specific for the considered problem that complete the problem formulation are:

p0 ¼ pout; T0 ¼ Tw; Tin ¼ Tw and L ¼ Hch.
The result obtained from SIMPLE-TS calculations are compared to the available analytical solution of viscous, compress-

ible isothermal flow in a long microchannel [22] and as well as to the DSMC data. The analytical solution (AS) [22], given for
the pressure pAS (48) and the horizontal component of velocity uAS (49), can be rewritten in a non-dimensional form accord-
ing to the given scales as follows:
pASðxÞ ¼ pout �r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ð1þ 2 � rÞ x

Lch
þ ðP2 þ 2 � r � P2Þ 1� x

Lch

� �s" #
ð48Þ

uASðx; yÞ ¼ 1
A � 5 � Kn

ffiffiffiffi
p
p dpASðxÞ

dx
1� 4

y� 0:5
Hch

� �2

þ 4 � F � Kn
pASðxÞ

" #
ð49Þ
where r ¼ 6 � F � Kn; P ¼ pin=pout is the pressure ratio and F ¼ 1 is the slip coefficient.
The analytical solutions pAS and uAS uses the well-known Maxwell velocity-slip BC. The same BC on the channel walls are

used in the SIMPLE-TS calculations. For velocity-slip BC (41), the variable f is equal to f ¼ 1 � Kn=qlocal. The temperature of the
gas nearby the channel wall is equal to the wall temperature Tw.

A long enough channel covered with a uniform grid with steps Dx ¼ Dy ¼ D ¼ 0:05 is considered so that the total number
of grid cells is equal to (1000 � 20). This problem is solved for Kn ¼ 0:05 (defined at the channel outlet),
Tin ¼ Tw ¼ 1; pin ¼ 3; pout ¼ 1, the aspect ratio is A ¼ Lch=Hch ¼ 50 and the pressure ratio is P ¼ 3. The results are presented
in Figs. 5–7.

As the pressure does not depend on y the macroscopic variable profiles are shown only on the centreline of the channel
y ¼ Hch=2, Fig. 5. The temperature profile is very close to constant calculated by both SIMPLE-TS and DSMC methods. The
convergence criteria used for this steady-state problem are �p ¼ �T ¼ �u ¼ �v ¼ 10�12. The mass flow rate is calculated at
both inlet ðFinÞ and outlet ðFoutÞ as follows:
Fin ¼
X

j¼1...Ny�1

q0;j � u0;j � Dyj; Fout ¼
X

j¼1...Ny�1

qNx�1;j � uNx�1;j � Dyj ð50Þ
The calculated difference between both values is very small, jðFin � FoutÞ=Finj � 2:5� 10�8, illustrating a very good conserva-
tion of mass in the results obtained by the SIMPLE-TS method. The graphics illustrate also the very good agreement between
the analytical solution, SIMPLE-TS and DSMC data.

The DSMC calculations are performed on a grid with 800 � 80 cells with a total number of 5:67� 106 particles.

4.2. Unsteady pressure driven gas flow in microchannel

To compare the efficiency between SIMPLE-TS, SIMPLE and PISO [30] we calculate the non-stationary pressure driven gas
flow in microchannel. The flow geometry is the same as the considered in the previous stationary case (Fig. 4). Correspond-
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ingly, at the channel walls we have velocity-slip (41) and temperature-jump (43) boundary conditions with coefficients (42)
and (44). The initial condition is a gas at rest (the velocity fields are equal to zero), the pressure of the gas in the channel is
equal to the pressure at the outlet ðpoutÞ, the gas temperature is equal to the temperature of the channel walls ðTwÞ. At zero-
time t ¼ 0 the inlet is opened suddenly and the gas under pressure pin and temperature ðTin ¼ TwÞ enters the channel volume.
We consider the initial part of the transient period and compare at several different times the compression wave propaga-
tion, calculated by all considered methods. A channel length of Lch ¼ 2 is sufficient for our aim. The consideration of a short
channel allows us to carry out a set of runs sufficient for analysis of the influence of the time and spatial step variation. The
results are obtained for five spatial steps Dx ¼ Dy ¼ D ¼ 0:05, 0.025, 0.01, 0.005 and 0.0025. The profiles of the macroscopic
variables along and normal to the channel are shown in Figs. 8 and 9. As one can see the results convergence with the de-
crease of the spatial step so that the difference between the profiles for D ¼ 0:01 (200 � 100) and D ¼ 0:0025 (800 � 400) at
time t ¼ 0:2 is less than 2:5%. The chosen time step is Dt ¼ 10�4. For a fixed spatial step D ¼ 0:01 the difference in the fields
obtained for Dt ¼ 10�4 and Dt ¼ 10�5 at time t ¼ 0:2 is less than 0.11%. for the same case the CPU times of SIMPLE, PISO and
SIMPLE-TS calculations are compared. All calculations are done on a PC Pentium D 2.8 GHz, with 2 GB RAM/667 MHz.

The Standard SIMPLE method is realized by using one pass of the pressure-correction equation. In order to take into ac-
count the corrections in the pressure field, the density is computed from the state equation after the velocity evaluation.
Then the fluxes (Fx and Fy) are calculated by using the last computed values of the density and velocities. Finally, temper-
ature is computed from the energy equation (30) by using all final values of pressure, velocities, density and fluxes. After
that the density is re-calculated with the new temperature value. Some runs with different under-relaxation coefficients
have been performed in order to find an optimal under-relaxation coefficient ap ¼ 1:575� 10�5 for pressure. No under-relax-
ation coefficients for u, v and T are applied. The maximum residuals of the equations are �p ¼ �T ¼ �u ¼ �v ¼ 10�9 (37). About
1776 s of CPU time is needed to reach the benchmark time t ¼ 0:2 (40 iterations in mean per a time step).

The PISO method contains a prediction step, which takes approximately the same CPU time such as the correction step.
Finally, it is worth noting that there is not any need to include under-relaxation coefficients in PISO [30] and SIMPLE-TS. The
results, obtained from the calculations carried out by PISO and SIMPLE-TS, are summarized in Tables 1 and 2, where the max-
imum difference between the current residual and a fixed one � ¼ 10�9, obtained with unlimited number of iterations or cor-
rection steps for u, v, p and T fields, is given. The number of iterations, when unlimited iterations for SIMPLE-TS and
unlimited correction steps for PISO are used, are rounded off to the closest integer value in order to avoid eventual confu-
sions. As one can see from the results for t ¼ 0:2 the maximum difference between the calculated by SIMPLE and SIMPLE-TS
macroscopic fields (u, v, p and T) is 0:929� 10�3. The maximum difference between the calculated by PISO and SIMPLE-TS
fields (u, v, p and T) at t ¼ 0:2, is 1:002� 10�8, which is within the used accuracy. Tables 2 and 3 show that for the same CPU
time a SIMPLE-TS run reaches a better accuracy or for a fixed accuracy it needs less CPU time than required for a correspond-
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ing PISO calculation. Generally speaking, the SIMPLE-TS calculations take much less CPU time, than the SIMPLE and less time
than the PISO ones.

4.3. Flow past a confined square in microchannel

As a second example we consider a 2D steady-state laminar flow around a small square particle with size a confined in a
plane microchannel (height Hch) as shown in Fig. 10. The reference length is equal to the square size ðL ¼ aÞ. The blockage ratio
B ¼ a=Hch is equal to B ¼ 10, the inflow length is La. The problem is considered in a local Cartesian coordinate system, which is
moving with the particle. Thus for an observer moving along with the particle the problem is transformed to a consideration of a
gas flow past a stationary square confined in a microchannel with moving walls. Reference parameters for this problem are:
p0 ¼ pin; T0 ¼ Tin and L ¼ a. Temperature of the square and channel walls are equal to T0. On the walls of the channel and
the square velocity-slip (41) and temperature-jump (43) boundary conditions are imposed. The Knudsen number is Kn ¼ 0:05.

4.3.1. Subsonic gas flow
In the subsonic case the Mach number is 0.1, Lch ¼ 40; La ¼ 15:5. The spatial steps are Dx ¼ Dy ¼ D ¼ 0:025 (1600 � 400).

The channel walls are moving with a constant velocity equal to u ¼ 0:09129 (according to Mach number 0.1). The inflow



Fig. 8. The influence of the spatial step size on the calculated profiles along the channel axis at time t ¼ 0:2. (a) u at ðy ¼ Hch=2Þ, (b) v at y ¼ 0:05, (c) p at
y ¼ Hch=2 and (d) T at y ¼ Hch=2.
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boundary conditions ðBCinÞ are: uin is calculated from the continuity equation for first control volume on OX, similarly to the
pressure driven flow in a channel, @v=@x ¼ 0; pin ¼ 1 and Tin ¼ 1. The outflow boundary conditions ðBCoutÞ are: uout is calcu-
lated using the continuity equation defined for the last control volume on OX (46), @v=@x ¼ 0; @p=@x ¼ 0 and @T=@x ¼ 0. For
these boundary conditions, the difference between inflow and outflow fluxes, calculated using (50), is jðFout � FinÞ=
Finj � 8:5� 10�10. The same problem is calculated also by using the DSMC method. The obtained by SIMPLE-TS drag coeffi-
cient CSIMPLE-TS

D ¼ 7:493 is in a good agreement with the drag coefficient CDSMC
D ¼ 7:467 calculated by the DSMC method. The

DSMC calculations are performed on a grid with 1600 � 400 cells with a total number of particles 16:6� 106. The drag coef-
ficient is defined as CD ¼ D=ð0:5q00U2SÞ , where q00 is density, D is the drag force [N], U is velocity and S is the projected area.
From Figs. 11 and 12 one can see that the agreement between SIMPLE-TS and DSMC data is very good. It is important to note
that for small Mach number to obtain DSMC data with a reduced variance one needs to carry out very long calculations com-
pared to those of SIMPLE-TS.

4.3.2. Supersonic gas flow
In the supersonic calculations the Mach number is 2.4261. The channel length is Lch ¼ 50, the distance between square

and the channel inlet is La ¼ 5:5. The channel walls are moving with a constant velocity u ¼ 2:2147 (according to Mach num-
ber 2.4261). The inflow boundary conditions ðBCinÞ are: uin ¼ 2:2147; v ¼ 0; pin ¼ 1 and Tin ¼ 1. The outflow boundary con-
ditions ðBCoutÞ are: @u=@x ¼ 0; @v=@x ¼ 0; @p=@x ¼ 0 and @T=@x ¼ 0.

The results for the drag coefficient of square are shown in Table 3 for different spatial steps D ¼ Dx ¼ Dy of the compu-
tational grid given in the first column of Table 3. The difference between inlet and outlet fluxes (50) is less than
jðFout � FinÞ=Finj � 10�8 for all calculated cases. The profiles of u, v, p and T computed for different spatial steps in the mid-
plane of the channel are shown in Figs. 13 and 14. The differences between the solutions obtained by using different spatial
steps are computed in percent (%) for the first local maximum of u behind the square (see Fig. 13), are given below:

� difference between D ¼ 0:05 and D ¼ 0:025: 0:99562�0:69239
uin

� 13:7%

� difference between D ¼ 0:025 and D ¼ 0:0125: 0:69239�0:45352
uin

� 10:8%

� difference between D ¼ 0:0125 and D ¼ 0:00625: 0:45365�0:36468
uin

� 4:02%

One can see that the results converge with the grid refinement. We accept that the numerical solution is accurate enough
for a spatial step D ¼ 0:00625 (8000 � 1600).



Fig. 9. The influence of the spatial step size on the calculated profiles for (a) u, (b) v, (c) p and (d) T at a section x ¼ 0:2 (normal to the channel axis) at time
t ¼ 0:2.

Table 1
CPU times for PISO to reach t ¼ 0:2.

Number of correction steps CPU time (s) Maximum difference (%)

2 123.25 6.28
3 168.75 1.01
4 213.50 0.130
5 259.75 0.0178

10 497.00 0

Table 2
CPU times for SIMPLE-TS to reach t ¼ 0:2.

Number of iterations CPU time (s) Maximum difference (%)

Loop 2 Loop 3

2 1 86.00 16.7
2 2 97.25 8.99
2 3 108.50 8.23
3 1 128.00 1.35
3 2 145.25 0.597
3 3 162.50 0.591
4 1 170.75 0.119
4 2 194.00 0.0463
4 3 217.00 0.0463
5 1 213.25 0.0109
5 2 242.00 0.00379
5 3 271.00 0.00379

10 1 424.75 0
7 2 339.25 0
7 3 384.25 0
7 4 409.25 0
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Fig. 10. Flow geometry for a square-shaped particle with size a confined in a channel with length Lch and height Hch.

Fig. 11. Macroscopic profiles obtained by SIMPLE-TS (solid line) and DSMC (circles) data for: (a) horizontal velocity along the channel at y ¼ Hch=2 and (b)
vertical velocity along the channel at y ¼ Hch=4.

Fig. 12. Profiles of (a) the horizontal component of velocity and (b) the vertical component of velocity obtained by SIMPLE-TS (solid line) and DSMC (circles)
data in sections normal to the channel axis in front of square ðx ¼ 14:025Þ, in the middle of the square ðx ¼ 15:5Þ, and behind the square ðx ¼ 18:775Þ.

Table 3
The drag coefficient of square for different meshes.

D Mesh CSIMPLE-TS
D

0.05 1000 � 200 1.875
0.025 2000 � 400 1.876
0.0125 4000 � 800 1.860
0.00625 8000 � 1600 1.848
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Fig. 13. Profiles of the horizontal velocity along the centre line of the channel ðy ¼ Hch=2Þ for different spatial steps: (a) in front and (b) behind of the square.

Fig. 14. Temperature profiles along the centre line of the channel ðy ¼ Hch=2Þ for different spatial steps: (a) in front and (b) behind of the square.

Fig. 15. Horizontal velocity profiles calculated by SIMPLE-TS (solid line) and DSMC (circles) in the mid-plane along the microchannel in front (a) and behind
(b) of the square.

Fig. 16. Temperature profiles calculated by SIMPLE-TS (solid line) and DSMC (circles) in the mid-plane along the microchannel in front (a) and behind (b) of
the square.
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Fig. 17. Horizontal velocity field calculated by SIMPLE-TS (upper part) and DSMC (lower part).

Fig. 18. Temperature field calculated by SIMPLE-TS (upper part) and DSMC (lower part).
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The supersonic flow is calculated by using a parallel version of SIMPLE-TS code. In the parallel algorithm a decomposition
of the computational domain is realized. The comparison of the results obtained by SIMPLE-TS (steps D ¼ 0:00625
(8000 � 1600) cells), and DSMC (4000 � 800 cells and a total number of particles 96:1� 106) in Figs. 15–18. The drag coef-
ficient, calculated by DSMC, is CDSMC

D ¼ 1:858, which is in an excellent agreement with the value obtained by SIMPLE-TS (see
Table 3).

The largest deviations of the SIMPLE-TS solution from the DSMC data are in the shock wave areas, where the field gradi-
ents are significant. From the graphics given for the horizontal component of velocity (Fig. 15) and the temperature (Fig. 16)
one can detect a shock wave displacement between both solutions around of the square. A similar displacement between
molecular and continuum results are pointed out in the works of other authors (for example, see [9]).

4.3.3. Rayleigh–Bénard flow of a rarefied gas
The last example is linked to other group of problems that can be successfully analysed by SIMPLE-TS, namely, the prob-

lems of pattern formation in gaseous flows. The Rayleigh–Bénard convection of a rarefied gas [29,10] in continuum limit is
considered for the case Kn ¼ 0:005; Fr ¼ 50:0; Th ¼ 1 and Tc ¼ 0:1. Fig. 4 shows the geometry of the computational domain,
where Th (the reference temperature) and Tc are temperatures of the walls at y ¼ 0 and y ¼ Hch, respectively. Character



Fig. 19. The minimum, maximum and average profiles of (a) u-velocity and (b) v-velocity components computed by SIMPLE-TS (solid line), DSMC (circles)
and finite difference (dash-line).
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length is L ¼ Hch. The dimensions of the channel are Hch ¼ 1 and Lch ¼ 2. For this problem periodicity boundary conditions are
used, instead BCin and BCout . The boundary conditions at the walls are kept the same as defined in the previous examples. The
initial condition is an equilibrium gas at rest ðuðx; yÞ ¼ 0; vðx; yÞ ¼ 0Þ, with temperature and pressure equal to
ðTðx; yÞ ¼ 1; pðx; yÞ ¼ 1Þ. The grid steps are Dx ¼ Dy ¼ D ¼ 0:01 (200 � 100). For more details of the problem formulation
see [10]. The runs are performed by both SIMPLE-TS and DSMC methods. In SIMPLE-TS the iteration process (loop 2) within
each time step is stopped, when convergence criteria (36) are fulfilled for � ¼ 10�10. The final state of the convection is a sta-
ble vortex flow. The conservation of mass in the whole computational domain is very good. For example, the averaged den-
sity is changed from 1 (at the beginning of calculation) to 1þ 7:4� 10�8 (at the end of the calculation). Fig. 19 illustrate the
peaks (maximum and minimum) as well as the averaged velocity profiles of u and v, which are obtained by applying oper-
Fig. 20. The average density and temperature profiles computed by SIMPLE-TS (solid line), DSMC (circles) and finite difference (dash-line).
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ators max0<x<Lch
ð�Þ; min0<x<Lch

ð�Þ; mean0<x<Lch
ð�Þ, respectively, to the velocity fields uðx; yÞ and vðx; yÞ. Fig. 20 illustrate the

averaged density and temperature profiles, which are obtained by applying operator mean0<x<Lch
ð�Þ, to the density qðx; yÞ

and temperature Tðx; yÞ fields. Fig. 21 shows the vector plot of velocity computed by SIMPLE-TS. The results, shown in Figs.
19–21, are compared with the corresponding results available in Stefanov et al. [10] and the agreement is very good.

5. Conclusions

The algorithm of method SIMPLE-TS is derived from the general form of equations of compressible viscous gas. The con-
sidered problems concern gas flows of very different nature. The pressure driven flow in a long microchannel and the sub-
sonic flow past square in microchannel are low speed flows. The supersonic flow past a square confined in microchannel,
illustrates a high-speed flow with shock waves and large gradients of the macroscopic variables. The calculations of the Ray-
leigh–Bénard convection flow of a rarefied gas demonstrates the ability of the proposed SIMPLE-TS to capture complex non-
linear phenomena such as lost of stability and pattern formation in compressible gas flow investigated in continuum limit.
All these problems are calculated in a straightforward way by using SIMPLE-TS without any additional improvements or
modifications. All obtained results are in a very good agreement with the other available results or obtained by other meth-
ods during the research work on the present paper. The comparison between SIMPLE, PISO and SIMPLE-TS calculations
shows that the SIMPLE-TS method is more efficient than SIMPLE and slightly more efficient than PISO. Another advantage
of SIMPLE-TS is that the method works effectively without under-relaxation coefficients.
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